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ABSTRACT 

Microarray image technology is a powerful tool for moni- 
toring the expression of thousands of genes simultaneously. 
Each microarray experiment produces immense amounts of 
image data, and efficient storage and transmission requires 
compression that utilizes microarray image's structure and 
unique analysis goals. Hence, we have developed a pro- 
gressive compression scheme for microarray images which 
can be either lossy or lossless. Our scheme has a coded 
data structure that allows fast decoding and reprocessing of 
image subsets, and includes summary statistics and image 
segmentation information. Since visual fidelity is not the 
end goal for microarray images, we introduce a new mea- 
sure of distortion for lossy compression: the sensitivity of 
microarray information extraction to compression loss. We 
find that a lossy compression ratio of 8:1 for cDNA microar- 
rays minimally affects downstream processing. The average 
lossless compression ratio is 1.83:1 for cDNA images and 
2.43:1 for inkjet images, comparable to state-of-the-art loss- 
less Schemas, yet with added flexibility and information. 

1. INTRODUCTION 

Microarrays have become an important tool for developing 
understanding of gene function, regulation and interaction 
through the simultaneous study of thousands of genes. The 
raw data produced by a microarray experiment is an image 
(or more accurately, a two-dimensional matrix of intensity 
values) of a grid of thousands of spots, one for each gene. 1 

The proven and potential scientific value of microarray im- 
age technology is enormous, but it is widely acknowledged 
that the quality of microarray data is highly variable. With- 
out standardization of methods and microarray processing 
tools, results from different labs are rarely comparable. We 
need to distinguish between the inherent noise of the data, 
the source of which lies in experimental variation, and the 
noise introduced by different methods used for genetic in- 
formation extraction. For this reason, it is often advisable 
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to store the raw image data from an experiment rather than 
just the summary statistics from a particular extraction al- 
gorithm. Moreover, microarray experiments are costly and 
the image data files are large (>40 MB). Various organiza- 
tions are establishing publicly accessible databases for shar- 
ing microarray data. The cost of data storage is rapidly de- 
creasing. However, for efficient transmission and data dis- 
tribution, and for storage of large quantities of image data, 
compression is an essential tool. 

We propose a progressive compression scheme which 
can be lossless or lossy. We add necessary flexibility to tra- 
ditional lossless coding that facilitates downstream genetic 
information extraction analysis. In lossy compression, we 
preserve the genetic information in the lossily compressed 
microarray images, such that the downstream tasks are un- 
affected by the compression. We take into consideration 
that the appropriate measure of performance for compres- 
sion of microarray images is not visual fidelity or MSE, as 
is generally the case in image compression. Microarray im- 
ages are processed using a multi-step procedure (image seg- 
mentation, information extraction, normalization), and thus 
we do not have a simple distortion criterion over which to 
optimize. One variant of our lossy scheme has a locally 
varying bound on the maximum pixel-wise error, i.e. the 
error bound is a function of the local signal-to-noise ratio. 
With this approach, at low bit-rates (compression ratio 8:1 
for cDNA microarrays), the effect of lossy compression on 
the extracted genetic information is smaller than the array- 
to-array variability in replicated experiments. Moreover, the 
impact of compression is smaller than that of changing the 
method of information extraction. Thus we define a new cri- 
teria of acceptable distortion for lossy compression of mi- 
croarray images. 

Microarray imaging is an emerging technology and sev- 
eral experimental procedures have been developed produc- 
ing different image characterizations, including cDNA, oligonu- 
cleotide, and inkjet technologies.  We will describe com- 
pression results on cDNA and inkjet microarrays. 
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2. CDNA AND INKJET MICROARRAY IMAGES 

Messenger RNA (mRNA) acts as an intermediate in pro- 
tein synthesis from genes contained in DNA. The amount 
of mRNA present in a cell is related to the gene expression 
level. Microarray experiments measure differential gene ex- 
pression, or the amount of genetic material in a sample rel- 
ative to another sample, through competitive hybridization. 
In the cDNA microarray procedure, DNA probes (each cor- 
responding to a gene) are "spotted" onto a glass slide by a 
robotic arrayer. Then mRNA samples from two different 
cells are labeled with fluorescent tags (commonly referred 
to as "red" and "green"), and are mixed and hybridized onto 
the array. A laser scan of the array produces two fluores- 
cent intensity images. The intensity ratio for each probe, or 
spot, is proportional to the relative abundance of hybridized 
mRNA in the two samples. 

Inkjet microarrays employ the same concept but uses 
synthesized oligonucleotide probes and printer technology 
to deposit the material onto a slide. 

The images are structured, with high intensity spots (cor- 
responding to the probes) located on a grid (see figure 1). 
The spots are submerged in a noisy and non-stationary back- 
ground. The spots have roughly circular shape, though some 
show significant deviation from this shape due to the exper- 
imental variation of the spotting procedure. 
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Fig. 1. Microarray image: 4x4 grid set-up, 19 x 21 spots 
per grid. 

2.1. Genetic information extraction 

To estimate the differential gene expression, we have to 
identify the high intensity regions in the image correspond- 
ing to each probe (image segmentation), and estimate and 
remove the local background noise (background correction). 

Automatic registration of the image is used to determine 
the approximate centers, or the grid location, of the spots. 

[1][2]. We use a seeded region growing algorithm for initial 
segmentation, followed by a two-component Gaussian mix- 
ture model, to further refine the boundaries of the spots, or 
regions of interest (ROI) [3]. Various approaches to back- 
ground correction are described in ([2], [4], [1]). 

An example of spot, or gene, summary statistics for 
cDNA is the ratio of background corrected mean intensi- 
ties. We denote by Ri the red (fluor tag) scan pixels, and by 
d the green scan pixels. The differential expression level, 
R/G, is then calculated as the ratio of the mean ROI inten- 
sities: 

R _ 5 Z/fljgiioj -ß» ~ B9R 

where Bg refers to the estimates of the local background, 
and S is the number of ROI pixels. 

Normalization is necessary prior to statistical modeling 
and array-to-array analysis. [5] 

3. LOSSY AND LOSSLESS COMPRESSION OF 
MICROARRAY IMAGES 

Background correction and normalization involve segment- 
ing foreground from background, and microarray backgrounds 
are invariably low-intensity. To facilitate this segmentation, 
a compression scheme must keep more precision for low 
intensity spot regions, but can use a coarse image recon- 
struction for high intensity spot regions. Note that the com- 
monly used MSE criterion does not reflect this. We find 
that local SNR is a good indicator for background-corrected 
spot intensity. Thus we vary the pixel-wise error bound us- 
ing local SNR thresholds. Our aim is to keep both bias and 
variance under control, and ensure that the effect of com- 
pression is smaller than the variability between replicated 
experiments, or between methods of information extraction 
to another. We define this as acceptable loss for microarray 
image compression. 

Ideally we want the output of the compression scheme 
to have a data structure. This would enable us to transmit, 
and reconstruct image subsets at different precision. 

State-of-the-art lossy compression schemes for natural 
and medical images are almost without exception wavelet 
based. However, this is not appropriate for the compression 
of microarray images. In fact, the many and small high in- 
tensity regions create large wavelet coefficients over almost 
the entire image subbands. At low bit-rates, algorithms such 
as SPIHT, or wavelet and zero-tree coding [6] will be dom- 
inated by the edges around the high intensity spots. Com- 
pression schemes that are not wavelet based, but based on 
predictions in the spatial domain, also have difficulty with 
the many high intensity spots. A rowscan based prediction 
scheme creates a "smearing" bias in the image reconstruc- 
tion. 



We take a spatial prediction approach. To avoid the 
"smearing" bias we encode the spot regions and the back- 
ground separately. We first transmit an overhead defining 
the ROI and background, i.e. a segmentation map. We refer 
to this approach as segmented LOCO, or SLOCO. 

transmitted as overhead to the decoder. However, we can 
do nearly as well by using an approximate estimate of the 
optimal Golomb parameter k. We encode the spots in a row 
scan manner. Missing context pixels for the predictor are 
filled in with the spot mean from the overhead. 

3.1. Segmented LOCO (SLOCO) 

Our scheme builds on the JPEG 2000 lossless standard, LOCO 
(LOw Complexity), [7]. Here we will assume the reader is 
familiar with the components of LOCO and will briefly dis- 
cuss how our method differs. 

SLOCO differs from standard LOCO in mainly three as- 
pects. Firstly, the spots and backgrounds are encoded sep- 
arately. Secondly, a UQ-adjust quantizer is used instead of 
the UQ quantizer. Thirdly, we allow for varying maximum 
pixel-wise error bounds 5. We use a runlength code that 
takes the segmentation map, and the varying 5 into account. 

We use a UQ-adjust quantizer for large 5. Thus, the 
bins near the center of the error distribution, where most of 
the probability mass is located, have adjusted reconstruc- 
tion levels closer to the MSE distortion optimal, as well as 
smaller bin-widths 25' + 1, such that the maximum error is 
still bounded by 5. The outer bins have bin-widths 25 + 1, 
and center bin reconstruction levels. 

3.2. Overhead 

The overhead of the SLOCO algorithm contains the spot 
means and standard deviations, as well as the local back- 
ground intensity estimates and estimates of the local back- 
ground standard deviation. The overhead also contains the 
estimated grid structure of the microarray images, and the 
segmentation map. 

The spot and background means are encoded using adap- 
tive Lempel-Ziv. The segmentation map is efficiently en- 
coded using the chain code of Lu and Dunham [8]. The 
average cost of the overhead is ~ 0.376 bpp for the cDNA 
data and 0.076 for the inkjet data. 

If no re-processing of the images is needed, the over- 
head contains all relevant information for down-stream anal- 
ysis. In addition, it contains spot quality measurements such 
as spot shapes, variances and the local background variance. 

3.3. Coding the Spot Regions 

Given the overhead we can compute the signal-to-noise ra- 
tio of each spot. Based on the SNR we can pick a bound 
on 6 for each spot. For cDNA, the size of each spot is too 
small to allow for any adaptive prediction step, or for adap- 
tive estimation of the Golomb parameter. We therefore use a 
fixed Golomb code, and only the fixed predictor Xfix within 
each spot. The spot Golomb parameter could be estimated 
on the encoder side, after applying the fixed predictor, and 

3.4. Coding the Background 

The background is encoded in a row scan fashion for sub- 
blocks of the images. It is more efficient to encode back- 
ground pixels for the entire image as one block. However, 
we find that encoding sub-blocks (in cDNA, corresponding 
to the 4 x 4 print-tip configuration) gives approximately the 
same bit-rate but allows for image subset reconstruction. 

Missing context pixels, i.e. the spot pixels, are filled-in 
using local background intensity estimates. 

The runlength coding of SLOCO differs from regular 
LOCO in that we do not allow runs to cross from a region 
with higher maximum error bound 5, into one with smaller 
5. If a spot is encountered during a run, we skip ahead to 
the next background pixel. 

4. PROGRESSIVE TRANSMISSION 

Our lossy compression scheme can be extended to a fully 
lossless reconstruction of the microarray images. Given the 
initial lossy reconstruction, the image reconstruction can be 
refined, spot by spot, background region by background re- 
gion, or even pixel by pixel, to any bit-rate above the mini- 
mum decodable bit-rate. Our scheme is thus progressive. 

The overhead provides us with the maximum error 5 in 
each region of the lossy reconstruction of the images. We 
encode bit planes of the residual image. If the maximum 
error in a region chosen is 6, then the quantization errors are 
approximately uniformly distributed on [—6,5]. This holds 
if 5 and 5' are reasonably close, and small. A UQ with two 
reconstruction levels corresponds to the first bit plane, and 
equals the sign of the quantization errors, which can be sent 
at rate 1 bpp. The decoder then reconstructs a refined error 
as sign x 5/2 and adds this to the previous lossy reconstruc- 
tion. If we want to refine this region of the image further, 
we compute a new residual image, again send the sign of the 
residual to the decoder, and reconstruct at levels sign x J/4. 
This achieves the log2 {25 +1) bit-rate. We choose this sim- 
ple coding scheme since it gives us total freedom to encode 
any part of the residual image at any rate we desire, inde- 
pendently of what we choose to do in other regions of the 
image. 

If 6 and 6' are very dissimilar, the quantization errors 
will not be uniformly distributed. We then compute the 
quantization bin centroids at the encoder, and send as over- 
head to the decoder, with negligible increase in coding cost 
for the large microarray images. 



5. RESULTS AND COMPARISON OF METHODS 

The average LOCO lossless compression ratio for our test 
cDNA images is 1.85:1. The SLOCO ratio is 1.83:1 (includ- 
ing the overhead information). In comparison, Lempel-Ziv 
(gzip) gives a compression ratio of 1.48:1, SPIHT 1.65:1, 
and wavelet (zero-tree coding + entropy coding of resid- 
ual) 1.72:1. The 8 least significant bits of cDNA images 
are close to random, i.e. have marginal entropy 8 bpp, and 
are unpredictable. This puts a ceiling of 2:1 on the loss- 
less compression ratio. The average LOCO lossless com- 
pression ratio for inkjet images is 2.44:1, while the SLOCO 
ratio is 2.43:1. 

Note that the SLOCO encoding contains easily extractable 
summary statistics and segmentation information not avail- 
able from LOCO. Moreover, SLOCO allows fast reconstruc- 
tion of subsets of the image, allowing researchers to access 
individual spots out of hundreds of thousands per image. 

The lossy compression ratio, using variable pixel-wise 
distortion bound, is 8:1 for cDNA microarray images. We 
find that the variability introduced by the lossy compression, 
in the extraction of the differential gene expression levels, is 
smaller than the array-to-array variability [9]. We also find 
that the difference in extracted gene expression levels be- 
tween different methods of genetic information extraction is 
much greater than the difference between lossless and lossy 
reconstructions of the images. For inkjet images, we have 
not had access to downstream analysis. The lossy compres- 
sion ratio for inkjet, with fixed maximum pixel-wise error 
S = 8 (3 bpp), is 6.51:1 using LOCO and 6.44:1 using 
SLOCO. 

6. CONCLUSION AND FUTURE WORK 

We have presented a lossy and progressively lossless com- 
pression scheme for microarray images. The flexible struc- 
ture of our scheme allows for lossless, or refined precision 
reconstruction for any subset of the images. At a compres- 
sion ratio of 8:1 for cDNA images, we find that the tasks of 
genetic information extraction with a variety of methods are 
only marginally affected by the compression. The effect of 
compression is smaller than the array-to-array variability. 
The effect is also smaller than the difference between al- 
ternative methods for information extraction. In fact, com- 
pression can improve the estimation of gene expression lev- 
els for cDNA images. We found that compression acts as a 
form of shrinkage for large absolute gene expression levels 
toward the mean of replicated arrays (taken as "truth"). 

As future work, we plan to formalize our bit allocation 
scheme in lossy SLOCO into a rigorous information theo- 
retic framework. Under this framework, we require a distor- 
tion function that measures the sensitivity of downstream in- 
formation extraction to compression. Using this sensitivity 

function, we allocate bits among the different gene spots. To 
encode m independent random sources X\,..., Xm (e.g. 
the spots) with R bits, the classic problem is how to allot 
these bits to the different components to minimize the to- 
tal distortion or sensitivity. For example, using local SNR 
as an indicator of this sensitivity, an analogy between our 
SNR-thresholded variable pixel-wise error bound and re- 
verse water-filling seems natural. We spend more bits (by 
lowering the pixel-wise error) on spots with 1/SNR values 
greater than a threshold 
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